Search results for "developing neuronal networks"

showing 5 items of 5 documents

Spectral entropy based neuronal network synchronization analysis based on microelectrode array measurements

2016

Synchrony and asynchrony are essential aspects of the functioning of interconnected neuronal cells and networks. New information on neuronal synchronization can be expected to aid in understanding these systems. Synchronization provides insight in the functional connectivity and the spatial distribution of the information processing in the networks. Synchronization is generally studied with time domain analysis of neuronal events, or using direct frequency spectrum analysis, e.g., in specific frequency bands. However, these methods have their pitfalls. Thus, we have previously proposed a method to analyze temporal changes in the complexity of the frequency of signals originating from differ…

0301 basic medicineComputer scienceNeuroscience (miscellaneous)ta3112Radio spectrumSynchronizationlcsh:RC321-571Correlation03 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicineBiological neural networkMethodsTime domainlcsh:Neurosciences. Biological psychiatry. NeuropsychiatrySimulationEvent (probability theory)rat cortical cellsMEAmicroelectrode array213 Electronic automation and communications engineering electronicsspectral entropyInformation processingCorrectiondeveloping neuronal networksMultielectrode array217 Medical engineering030104 developmental biologycorrelationmouse cortical cellsBiological systemsynchronization030217 neurology & neurosurgeryNeuroscienceFrontiers in Computational Neuroscience
researchProduct

Burst analysis tool for developing neuronal networks exhibiting highly varying action potential dynamics

2012

In this paper we propose a firing statistics based neuronal network burst detection algorithm for neuronal networks exhibiting highly variable action potential dynamics. Electrical activity of neuronal networks is generally analyzed by the occurrences of spikes and bursts both in time and space. Commonly accepted analysis tools employ burst detection algorithms based on predefined criteria. However, maturing neuronal networks, such as those originating from human embryonic stem cells (hESC), exhibit highly variable network structure and time-varying dynamics. To explore the developing burst/spike activities of such networks, we propose a burst detection algorithm which utilizes the firing s…

Computer scienceNeuroscience (miscellaneous)Interval (mathematics)ta3112lcsh:RC321-57103 medical and health sciencesCellular and Molecular Neuroscience0302 clinical medicineMoving averageHistogramBiological neural networkMethods Articleburst analysislcsh:Neurosciences. Biological psychiatry. Neuropsychiatry030304 developmental biology0303 health sciencesspike trainsQuantitative Biology::Neurons and Cognitionmicroelectrode arrayMEAaction potential burstsdeveloping neuronal networksMultielectrode arrayhuman embryonic stem cellsPower (physics)nervous systemSkewnesshESCsSpike (software development)Biological systemNeuroscience030217 neurology & neurosurgeryNeuroscienceFrontiers in Computational Neuroscience
researchProduct

Spectral entropy based neuronal network synchronization analysis based on microelectrode array measurements

2016

Synchrony and asynchrony are essential aspects of the functioning of interconnected neuronal cells and networks. New information on neuronal synchronization can be expected to aid in understanding these systems. Synchronization provides insight in the functional connectivity and the spatial distribution of the information processing in the networks. Synchronization is generally studied with time domain analysis of neuronal events, or using direct frequency spectrum analysis, e.g., in specific frequency bands. However, these methods have their pitfalls. Thus, we have previously proposed a method to analyze temporal changes in the complexity of the frequency of signals originating from differ…

rat cortical cellsMEAmicroelectrode arrayspectral entropydeveloping neuronal networksmouse cortical cellssynchronizationkorrelaatio
researchProduct

Corrigendum: Spectral Entropy Based Neuronal Network Synchronization Analysis Based on Microelectrode Array Measurements

2020

Physicsrat cortical cellsSpectral entropyspectral entropyNeuroscience (miscellaneous)developing neuronal networksMultielectrode arraylcsh:RC321-571Cellular and Molecular NeurosciencecorrelationSynchronization (computer science)Biological neural networkmouse cortical cellsBiological systemsynchronizationlcsh:Neurosciences. Biological psychiatry. NeuropsychiatryFrontiers in Computational Neuroscience
researchProduct

Burst analysis tool for developing neuronal networks exhibiting highly varying action potential dynamics

2012

In this paper we propose a firing statistics based neuronal network burst detection algorithm for neuronal networks exhibiting highly variable action potential dynamics. Electrical activity of neuronal networks is generally analyzed by the occurrences of spikes and bursts both in time and space. Commonly accepted analysis tools employ burst detection algorithms based on predefined criteria. However, maturing neuronal networks, such as those originating from human embryonic stem cells (hESCs), exhibit highly variable network structure and time-varying dynamics. To explore the developing burst/spike activities of such networks, we propose a burst detection algorithm which utilizes the firing …

purskeanalyysispike trainsQuantitative Biology::Neurons and CognitiontoimintapotentiaalipurskeetMEAmicroelectrode arrayaction potential burstsdeveloping neuronal networksihmisalkion kantasoluhuman embryonic stem cellssoluttoimintapotentiaaliryhmätnervous systemhESCsmikroelektordihilakehittyvät hermoverkotburst analysis
researchProduct